고차 방정식의 해 구하기 (뉴튼 - 랩슨법, Newton-Rahpson Method) 일반적으로 5차 이상의 방정식의 일반적인 해를 구할 수 없다는 사실은 잘 알려져 있다. 하지만 컴퓨터로 종종 5차 이상의 방정식의 해를 구할 필요가 생기게 된다. 이 때, 사람들은 뉴턴(Issac Newton) 과 랩슨(Joseph Raphson) 이 개발한 뉴턴-랩슨 법, 또는 그냥 뉴턴 법이라 알려진 방법을 이용하면 해의 근사치를 쉽게 구할 수 있다. 뉴튼 랩슨법은 상당히 단순함에도 불구하고 다항식의 해에 '매우 빠르게' 근접할 수 있다. 대부분의 경우 4 ~ 5회 정도 시행하게 된다면 10-⁴정도의 오차 내로 해를 구할 수 있게 된다. 어떤 함수 ƒ : [a, b] → R 가 구간 [a, b] 에서 미분 가능하다고 하자. (이 때, 이 함수의 해가 구간 [a,b] 안에 있다고 가정하자) 그렇다면 해.. 더보기 이전 1 ··· 13 14 15 16 17 18 19 ··· 180 다음